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As Is known, the convective motion of a fluid heated at the bottom Is the 
result of an equilibrium breakdown caused by the temperature gradient reach- 
ing a definite critical value. The equilibrium stability was most thorough- 
ly Investigated In relation to a horizontal layer of fluid (the Raylelgh 
problem, see review In cl]). Ostroumov [2 and 33 had investigated the con- 
ditions of convection generation in a vertical circular cylinder. Later 
lnvestigations.dealt with cylinders of other cross sections [4 to 73 and 
cavities of different forms C8 to lo]. These Investigations related to 
single vertical cylinders and cavities enclosed by heat conducting solids, 
or with specified boundary conditions. 

Of great interest.1~ the problem of convective Instability of a fluid 
contained in a system of cavities subject to thermal Interaction via a heat 
conducting solid, and In particular, In a system of vertical channels. Such 
problems have, apparently, not been analyzed so far. This paper gives an 
exact solution of the equilibrium stability problem for the case of two 
parallel vertical flat channels, separated by a solid mass. An approximate 
solution Is also presented for the problem of two vertical cylindrical chan- 
nels of circular cross section In a solid. The critical Rayleigh number, 
which determines the limit of instability, is derived in terms of thermal 
conductivity of the fluid and solid, and of the distance between the two 
channels. 

1. Blat ahannelr. Two vertical parallel flat fluid layers (each layer 

Is 2h thick, the distance between their centers Is 2d, and the z-axis points 

vertically upwards) are'provlded in a homogeneous heat 

B 

conducting solid (Flg.1). Under equilibrium conditions 

the fluid Is motionless and the temperature gradient 

Is constant and vertical 
dTo -A 

X 

k 

V" = 0, 
dz= V-1) 

We shall consider two-dimensional perturbations of 

equilibrium of the form 

I / v, = vy = 0, vz = v (z), T = T (z), Vp = 0 (1.2) 
Here v, T and p are respectively the perturbations 

of velocity, temperature and pressure. The dependence 
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of normal perturcations on time Is subject to the exp(- ut) law, where u 

is a real decrement (for heating from below) [ll]. At the limit of stability 

o=o, i.e. neutral perturbations are stationary. We write the equations 

of neutral perturbations in a dimensionless form (with primes denoting dlf- 

ferentiation with respect to x ) 

v” + KT = 0, T” + v = 0, T,,,“rO fizgy) ( (1.3) 

Here u , T are respectively the dimensionless perturbations of velocity 

and temperature of the fluid, T, Is the solid mass temperature perturbation, 

R is the Rayl.eigh number, g the acceleration of gravity, and 8, v; x are 

respectively the coefficients of the fluid thermal expansion, kinematic vls- 

coslty, and thermal dlffusivity. 'As units of length. velocity and tempera- 

ture we select h, x/h and Ah . 

At the liquid - solid Interfaces the velocity must become zero, and the 

continuity conditions of' temperature and heat flow must be fulfilled. Inas- 

much as the conductivity equation In the solid is expressed by T,"= 0 , the 

temperature in It must be llnearily dependent on the coordinate. 

The postulation of boundedness of temperature perturbation T, with X+ f= 

leads to the conclusion that the temperature in the outer regions of the 

solld is constant, and that there Is no horizontal flow.of heat In these 

regions. On the other hand, a horizontal heat flow may exist in the layer 

between the two channels resulting In a thermal interaction between these. 

Thus, boundary conditions of Equations (1.3) are 

u = 0, T = T,, hT' = T,' for r=z1 (1.4) 

v = 0, T' = 0 for xk=za 

( 

d-h 
21=*- 

d+h 
h ’ GCg=fh ) 

Here X = n/n,, and K and n. are the thermal conductivltles of the 

liquid and solid respectively, x1 and x2 are the Inner and outer boundaries 

of the right-hand (plus sign) and on the left-hand (minus sign) side channels. 

Further to this, the condition of closed flow stream must be fulfilled In the 

case of free convection4n a two-channel system 

where u, and U_ are the velocities in the rlght- and left-hand side chan- 

nels respectively. It Is assumed that the two channels are Interconnected 

at some distance at the top and bottom, and that the fluid can pass from one 

channel to the other, so that the rate of flow across the section of one 

channel may be dlfferent from zero. 

Problem (1.3) to (1.5) has even and odd solutions with respect to x . 

We shall first consider the odd type solutions. In this case the temper- 

ature in the layer of solid between the channels is T,= cx . For the 
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determination of velocity in the fluid it will be convenient to eliminate T 

from Equations (1.3) 
v'" + Rv = 0 (~~~) 

The general solution of Equation (1.6) has the form 

v=Asinrx+Bcosrx+C~inarx+Doahtx 
I 

where r =R" . The temperature in the fluid is then 

T = f”(Asinrz+Bcosrx-CCrx-DEahrx) 

Boundary conditions (1.4) lead to a system of homogeneous equations for 

the determlrmtion of constants A, B, C, D and c (condition of closed 

flow (1.5) is automatically fulfilled in the case of an odd solution). The 

condition of this system solvability yields an expression from which the 

critical value of the Rayleigh number is determined 

-2r +a&21 
w= hx1 

r(sec2rsech 2r - 1) (1.9) 

Having determined the constants of integration, we find the velocity and 

temperature distribution 

T=--&[ COS r (2% - f) +cabr (q - CC) Bin r (2% - xj 
COS r @a -- 4 --c0dv (28 - q) - 

--*nhr(z2-4 1 ($*.ffJ) 
sin r (za - zl) +si&r (z2 - Q) 

T,=---- 2L (1 -- cm 2rcn+r) 

r(cos 2r-+~h2r)(sin2r +sinh2r) 
X 

The plus and minus signs refer to the left- and right-hand side channels 

respectively. The solution (1.10) amplitude remains arbitrary in view of 

the problem homogeneity. 

In the case of an even solution the temperature of the intermediate solid 

layer is constant, 3;~ const . Constants of integration are derived from 

the boundary conditions (1.4) and the condition of closed flow (1.5). In 

view of the velocity beingSeven (u+= v_) , the latter must be fulfllled 

separately In each of the channels. The fluid velocity and temperature are 

defined by Formulas (1.10) with a plus sign for each of the two channels, 

but with different values of the critical number r which in this case is 

determined by the characteristic relationship 

tmer -tenrPr=O (l.ll) 

The temperature in the intermediate solid layer is 

T, = 
2 (sin2ramhZr+ cos 2rdd2r) 

r*(cos2r ---ama%) (sin 2r +eh2r) 
(1.12) 

Thus, Equations (1.9) and (1.11) determine the spectrum of critical Ray- 

leigh numbers with respect to r for the even and odd type of flow. It will 

be seen from (1.9) that the critical numbers r which correspond to odd 

levels depend on one parameter Xx, which defines the thermal relationship 

of the two channels. For example, large values of this parameter correspond 
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of the two channels. For example, large values of this parameter correspond 

to a weak interaction between channels (great thickness of the lntermedlate 

layer, or its low thermal conductivity). 

It will be seen from (1.11) that In the case af an even solution, the 
critical numbers do not depend on the intermediate layer parameters. This 
Is due to the temperature there being, in this case, constant and to the 
absence of any horizontal heat flow, I.e. there IS no thermal Interaction 
between the channels. In each of the channels an Nautonomous” circulation 
1s originated with a zero flow rate across Its section. Critical values of 
the Rayleigh number r coincide, quite naturally, with v lues which define 
the equilibrium stability limit in a single flat channel !! 61. Under these 
conditions the even and odd kinds of motion with respect to the middle of 
the channel correspond to the two groups of solutions of Equation (l.il) 

The odd (r, , rS , . . . ) and even (r, , r, , . ..) lower levels of the spectrum 
of critical numbers r are shown on Fig.2 as functions of Xxx. It will be 
seen from this graph that for LX, - m the “odd” critical values of the Ray- 
lelgh number decrease (decreasing stability). Of the greatest interest 1s 
the lower level of 
With Lv, * m , 

rl which actually determines the convection threshold. 
I.e. with the weakening of channel Interaction, the lowest 

critical number r1 tends to zero, and the equilibrium becomes absolutely 
unstable. We note that with the weakening of 
lntexactlon (Xx, em) the odd type motions become 

r practically *autonomous”, and that consequently 
the even and odd levels corres 

4 
onding to motions 

with an equal number of nodes ‘ir , and r3 , r. 
and r6, etc.) are drawn together. 

At the limit of decreasing distance between 
the two channels (Xx1 -0) the critical numbers 
are those of a single channel and correspond 
to motions with the velocity node at the chan- 
nel center. 

We may note ln conclusion that the solutlons 
derived In this Section are exact stationary 
solutions of the nonlinear convectlon equations. 

I 
2. Oyl$ndrloal oManala. We shall consider 

now two vertical circular cyllndrlcal channels 

of the tvme radius p spaced at a distance 

i? 3 6 3 
ad between their axes, and surrounded by a 

heat conducting solid mass. We conelder equi- 

Fig. 2 llbrium perturbations defined by 

v, =z ur, = 0, vz = iJ (5, Y), T = T (cc, y), Vp = 0 (2.1) 
and instead of (1.3) obtain Equations 

bv + RT = 0, AT -!- u = 0, AT, = 0 (.A=;+& R=@$) (2.2) 

All parameters of Equations (2.2) are dimensionless, with the cylinder 

radius p as unit. The position of axes 

In the horizontal plane la shown onFlg.3. 

We introduce bipolar coordinatea (a,@) 

defined by relations 

ws. 3 5= 
adam asin@ 

mba+cosfi ’ y ==cab3+cosp (2.3) 
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( 2a Is the distance between poles). At the fltiid - solid Interface the 

usual conditions for velocity and temperature must be fulfilled 

(the plus and minus signs correspond to the right- and left-hand side chan- 

nels), 

We shall limit ourselves to finding an approximate solution which would 

determine the emergence of convection (the lower odd level). With this In 

view we approximate the velocity by a polynomial which satisfies boundary 

condition u*= v,[l -(Lx---d)2-g2] (2.3 

Here u,, denotes an arbitrary (because of the problem homogeneity) ampll- 

tude of motion, with different signs for the right- and left-hand side chan- 

nels. 

The temperature T, in a solid mass Is a harmonic function odd with respect 

to x (I.e. also with respect to a ) which vanishes at Infinity (for a-+0) 
and Is periodic with respect to e 

The fluid temperature Is also approximated by a polynomial of the form 

IT* = A + B (cc - d) + C (5 - q2 + Cy2 (2.7) 

The constants of this expression of T* will be determined from boundary 

conditions and the requirement that T* (in accordance with Qalerkln'a method) 

must approximately satisfy the termal conductivity equation 

s 
(AT* + v*) T* dS = 0 

(Integration Is, carried out over the channel cross sections). 

Pig. 4 

Into a Fourier series with respect 

(2J3) 
Expanding T* 

to B , and 

llmltlng this expansion, as well as that of (2.6) 

to the first two harmonics, we obtain from the 

temperature boundary conditions and the Integral 

condition (2.8) five relationships 

A = - (1 + f) C, B = (2ha, - f) e4 C 

co = - 2hC 

Cl = 2 (f - 2ha,) c, c = - vo iz;lf;3;f, 

which determine the five constants A, 8, C, co 

and o1 We find, as a result 

(2.9) 

In this manner we have derived approximate expressions of temperatures 
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T* and T." , corresponding to the velocity approximation (2.5). 

Substituti~ Into the first of Equations (2.2) the approximations of u* 

and T*, multiplying it by ?J*, and integrating over the cross sections of 

channels, we derive the condition of solvability of system (2.2),'from which 

the Rayleigh number critical value can be determined 

After computation, we find 

R = 144 (* -i- 2f) 
(2 + 3f)” 

(2.10) 

(2.11) 

where Y is a known function of A and u. (see (2.9)). Formula (2.11) 

makes it possible to express the critical Rayfeigh number 3? as a function 

of the ratio the f$uid and solid mass thermal conductivities h - x. x. / and 

of the distance of the channel axes (in units of their radius) 2d= 2cosh aO. 

Fig.4 shows curves depicting the dependence of A on the dimensionless 
distance d for several values of X It will be seen that the most stable 
equilibrium obtains for X - 0 (infinite thermal conductivity of the solid). 
In this case the critical Raylelgh number Is at its maximum and independent 
of the distance between channels. With increasing d and I (i.e. with a 
weakening thermal lnteractlon between channels) the critical number decreases. 

Reverting to Formula (2.11), we note that the critical Raylelgh number 

with the approximation considered here, is, as a matter of fact, determined 

by one parameter, namely J" . This parameter can be given a physical mean- 

ing by relating it to the effective value of the dimensionless Blot number 

b which we shall define 

channel boundary 

by the heat flow and temperature averaged over the 

(2.12) 

Ihe sign (> denotes here the averaging over the boundary. Substituting 

T* we obtain b I 2/f . Thus parameter _f decreases with the increase of 

heat transfer between fluid and solid, i.e. with the increase of interaction 

between channels. This value is the analog of the interaction parameter Xx, 

in the case of flat channels (see Section 1). For large distances (ds 1, 

a0 >> 1) 
f = %a, = 2h In 2d (2.13) 
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